
) Pergamon 
www.elsevier.com/locate/jappmat hmech 

J. Appl. Maths Mechs, Vol. 63, No. 1, pp. 109-116, 1999 
© 1999 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII: S0021--8928(99)00016-7 0021-8928/99/S---see front matter 
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More accurate equations of the deformation of thin plates, which are more convenient for solving contact problems for bodies 
with coatings and containing, as a special case, the equations of all known applied theories, are derived by an asymptotic analysis 
of the first fundamental problem of the theory of elasticity. The equations of the deformation of thin-walled elastic bodies are 
classified, their qualitative correspondence to the equations of the theory of elasticity is clarified, and the forms of the features 
that arise along the shift lines of the boundary conditions in the corresponding contact problems are established. A criterion for 
selecting approximate models to describe the properties of the coatings depending on the geometrical and mechanical 
characteristics of the coating and the substrate and also on their degree of adhesion is given. © 1999 Elsevier Science Ltd. All 
rights reserved. 

The problem of refining and also of deriving new equations, suitable for solving mixed problems, is 
due to the fact that classical applied theories for describing practical phenomena are inadequate [1]. 
However, this situation does not mean that classical theories must be rejected. Despite the fact that 
there are a number of problems [2] where they do not work, there are problems that can only be solved 
using them [1]. Hence, the application of each theory of the deformation of thin-walled elastic 
components when solving any problem must be justified from the point of view of the agreement between 
the finhl result and some standard solution, obtained, for example, using the equations of the theory 
of elasticity. 

1. We will first obtain the equations which describe the stress-strain state of thin plates. To do this 
we will study the problem of the equilibrium of an infinite elastic isotropic layer (see Fig. 1) (G is the 
shear modulus and v is Poisson's ratio), which is in a state of three-dimensional non-axisymmetrical 
deformation under the action of normal and shear loads, applied to its faces. As regards the function 
am(X,y) and Xmn(X,y) (m, n = 1, 2), we will assume that either they are piecewise-continuous, absolutely 
integrable and bounded over the whole plane (x, y), or are functions of limited variation. 

The exact solution of this problem was constructed in [3] using a two-dimensional Fourier integral 
transformation with respect to the variables x and y and has the following structure (F1 = (-,4, A), 
F2 = (-B, B)) 

{am,r, mn} _ l  I 1 {'y'~m'Tran}e-i(~tx+[$y)d~ 
2g r~r2 

(1.1) 

1,,,o, w} = .!-- I I tu, v, 
Z~ FIr2 

D, ( ff.h, ~*h )U = Pl ( oth, fJh, ff.z, fJz, ~, ± , T m )± 

(1.2) 

Ol(O ,fJh)V = P2(=h,13h, az, Pz, X (1.3) 

02( ,f h)W = £ ±,Tin) 

£+ = £l  + ~2,  7 *,,, = Tjm +- T2m (m=l,2)  

where u, o, and w are the components of the displacement vector of points of the elastic layer. 
Here it is essential that the limits of integration in the quadratures (1.1) should be finite [4] and satisfy 

the inequalities 

?Prikl. Mat. Mekh. Vol. 63, No. 1, pp. 119-127, 1999. 

109 



110 Ye. V. Kovalenko 

Fig. 1. 

Ah .~ 1, Bh .~ 1 (1.4) 

These relations serve as one of the "conditions of applicability of the theory of thin plates" and indicate 
that the external stresses are distributed smoothly over the plate surfaces z = ___ h. 

We will introduce a dimensionless parameter, determined by the thickness 2h and the geometry 
of the region f~ of active loading of the layer, i.e. that region where the surface loads ~m(X,y) and Xmn(X,y ) 
(m, n --- 1, 2) constitute, for example, no less than 5% of the maximum values. Thus, when the region 
f2 is simply connected and bounded and its contour has a continuous curvature, we can assume [5] 

~. = h[min(/, pmi, )]-I 

l = I/j max 4(x - ~)2 + (y _ ~)2 (x, y) ~ D., (~,~) ~ 

where Pmin is the minimum radius of curvature of the boundary (3f2. 
A second consequence of the finiteness of the limits of integration in (1.1), in agreement with 

conditions (1.4), is the fact that the theory of thin plates only holds [4] when L ~ 1. 
We will assume that z = _h  in (1.3) asymptotically, apart from terms of the order of ~3(9~ ~ 0), we 4 

will simplify the first two expressions and retain terms O(~. ) in the last equation. Then, returning to 
the originals using formulae (1.2) [3], we can write (correcting the errors on the right-hand sides of the 
similar equations given in [3, 6, 7]) 

~0h2A2u+ -- A~,x(et)+ A~.xx('r,)+ A~..('r,)+ A~,xy('t 2) (1.5) 

~ 0 h 2 A 2 0 +  = A~,y(o')+ :t + -+ A2.yy (a" 2 ) + A3,xx ('t 2 ) + A4.xy ( ' r l )  (1.6) 

4A0h3A2w± = B~(~) + B~,x(~,) + t~y(~2)  

Here 0 = G(1 - v) -1 and A is the two-dimensional Laplace operator and we have put 

(1.7) 

{u+,v +, w± } = {u(x, y, +h),u (x, y, +h), w(x, y, :f.h) } 

er--{~-,¢~+}, 'rj ={~,'c~}, a = { a - , a  +} 

± + ~2j (J = 1,2) G+ ----¢][I "1"O2, "gj ----''[Ij 

A~(a)--::l:a-+ 2 - 7 v  h2Aa__ v h2Aa + 
150 - v) I - v 

A~:(a) = I~h(-a- 4"3a + + ~h2Aa - -I- ~h2Aa +) 

A~(a)= 2h . ( -a-  +3h2Aa -+h2Aa +) 
30-v) 

A~(a)=hr I + v  a_+a + 2v h2Aa_:i : 2 ( 4 + v )  h2Aa+ ] 
L3(! - v) 9(I - v) L5(! - v) 
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Bi~(a) = a - _4h2Aa -  + .27 h4A2a - +/haA2a+ 
5 275 3 

B ~ ( a ) f h [ a +  15(22--7Vv) h2Aa+ -+ 3(IV- V) h2Aa-] 

Relations (1.5)-(1.7) are more accurate differential equations of the deformation of thin plates 
(coatings) and enable one to take into account both their longitudinal and transverse deformations due 
to stretching and shear, and their deformation due to transverse bending and compression. 

Note that if, when deriving the more accurate equations of the deformation of thin plates, in view 
of the fact that the parameter ~. is small, we average expressions (1.3) over the thickness 

| /i 
IO, f', £v} = J{u, v, wlaz 

we arrive at the following equations 

~ e h A 2 ~  = Ai.x(Cr+)-6 ,~,z,=(1;~') + ~i.3,yy(1:i') +/~4,xy(X2) 

~ OhA20O - + - _ - _ - _ -- AI,y(ff ) .4- A2,yy(l; 2 ) .4- A3,xx (x 2 ) -6 A4,xy(t I ) 

(1.8) 

(1.9) 

Seh3a2w = + 

I ,~l(a+)= vh Aa +, ,~2(a_)=__ a_ 
3(! - v) 3 

/~3 (a_) 2 -, ,44(a-) l + v  = a ---- . . . .  a -  
3 ( !  - v )  3(2 - v )  

B j ( a - ) = a -  12-7v  h2Aa_ + 21 h4A2a _ 
15(I - v) 525 

B2 (a+) = h( a+ - 2 h2 Aa +) 
25 

V h2Aa_ 
9(1 - v) 

v h2Aa_ 
9(I - v) 

(1.10) 

which, unlike (1.5)-(1.7), only take into account the longitudinal deformations due to extension- 
compression and bending. 

The proposed models (1.5)-(1.10) differ from the equations obtained in [8] by the presence of higher- 
order terms in X on the right-hand sides and in the form of the coefficients of E. For example, in 
Eaq. (1.10) the difference when v = 0.3 is 3% in the coefficients of ~2 and 21% in the coefficients of 

We will consider in more detail special cases of the equations of the deformation of thin plates 
(1.5)-(1.10) derived above. 

Neglecting terms of the order of ~2 and higher on the right-hand side of (1.10), we obtain the 
Kirchhoff-Love model of a plate. Note that similar equations can be obtained from relations (1.7). If 
we only drop terms O(~. 4) in (1.10), we obtain equations of the Reissner-Timoshenko type theory. More 
exact questions of this theory can be written using expressions (1.7). 

On the left- and right-hand sides of relations (1.10) (or 1.7)) we will drop terms of the order of ~2 
and higher (i.e. we will neglect the bending stiffness of the plate), while on the right-hand sides of (1.8) 
and 3 (1.9) (or (1.5) and (1.6)) terms O(E ), and convert the last two expressions using the first. We obtain 

4GhA2~ = -vhA~.+x - (1 - v)x~,xx - 2x~.yy + (1 + v)X~.xy 

4 G h A ~  = -vhAo~ - (1 - v)z~.yy - 2x~.= + (1 + v)'t~,xy (1.11) 

i f -  = -h(x~. x + X~.y) 

System (1.11) is the equations of the deformation of a Melan covering [6]. 
Suppose now that xlj = u_ = v_ = w_ = 0 ( j  = 1, 2) in (1.5)-(1.7). We will neglect terms O(~f) and 

higher in Eq. (1.7) for w_. We obtain 
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6 -  = - h ( % l , x  + x = = . y )  ( 1 . 1 2 )  

At the same time, expressions (1.5) and (1.6) for u_ and u_ give 

vh(l - v) -1At~ + = x2L x + ~22,y (1.13) 

Introducing (1.13) into (1.7) for w+, we obtain 

w+ = (1 - 2v)h[2G(l - v)]qff + (1.14) 

Expressions (1.12) and (1.14) are the equations of a Fuss-Winkler foundation, describing the deforma- 
tion of a coating due to transverse compression. 

Moreover, the retention of terms of the order of ~6 when deriving (1.5)-(1.7) enables us, instead 
of (1.12) and (1.14), to write the three-dimensional analogue of the equation of a Pasternak-Vlasov 
foundation [9] with several coefficients of the bed and more accurate equations of the shear deformations 
[7]. 

2. We will now consider contact problems of the indentation without friction with a force P and 
momenta Mx and My of a rigid punch into a composite foundation, which an elastic (G2, Y2) half-space, 
reinforced with a relatively thin elastic (G~, ~/1) layer of thickness h. We will assume that the coating 
either lies freely on an elastic substrate (problem 1) or is rigidly attached to it (problem 2). The physical- 
mechanical properties of the half-space will be described by the equations the theory of elasticity (Lam6's 
equations), while the coatings will be described by Lam6's equations and the equations of the applied 
theories, presented in Section 1, respectively. Then, using an integral Fourier transformation with 
respect to x and ~, the problems reduce to determining the contact pressure q(x, y) = -%(x,  y, h)O~ 1 
(02 = G2(1 -g2) -  ) from an integral equation of the form 

Fq = g ((x, y) ~ ~ )  (2.1) 

Fq = II q(~, rl)k(~ - x, ll - y ) d ~  
tl 

k(s,t) = ~ I [. K(h~l)ei<°~*l~)dadl ~, ~/2 = (z= +132 (2.2) 
4 ~  r l r2  

In (2.1) g(x,y) = 8 + (:~ + (zx7 - f (x ,y )  is a function of the settlement, defined by the rigid displacement 
of the punch and the shape of its base z = f(x, y), which occupies the region ~. 

The symbol of the kernel K(hy) in (2.2) can be represented as K(hy) = L(hy)y -I, where the following 
expressions are obtained for the function L(u)  (u = h~) [10] 

ch 2u - 1 + n(sh 2u + 2u) 
1) nL(u) = sh 2u + 2u + n(ch 2u - 1 - 2u 2 ) (2.3) 

2) nL(u)= 2neh2u+(2m+O)sh2u+ 20u 
(2m + O)(eh 2u - 1) + 2n sh 2u + 2(1 - 0u 2) (2.4) 

O = n 2 - m 2 ,  m = 1 - I1, g = e I - n £ 2 ,  n = O l 0 ~  l 

01 = G I (1 - v I )-I, Ej. = (l - 2vy)[2(1 - vj)]-l (j = 1, 2) 

when the stress-strain state of the coating is modelled by the equations of the theory of elasticity and 

nL(u) = [n + Rl(u)][l + R2(u)] -1 (2.5) 

when the properties of the coating are described using the applied theories. 
In particular, we have for the first problem 

5 4 
Rl(u) = ~,ali ui, R2(u)= ~,bli ui (2.6) 

i=l i=2 

1 1 i 16  
all = ~ ,  al2-- '~n, al3---i- 6 ,  a14=525 n 
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27 ! b,a I 1 
at5 = 5 " ~ '  bt2 = 3 '  . = g n ,  b14 =-al4n 

4 

Rl(U ) = a22 u2 -6 a24 u4, g2(u ) = Zb2 i  ui (2.7) 
i=2 

n 11 1 i 
a22 =6"0 (17-  lOcI)' a24 = 8400 n' b22 =--a22'n b23 =bl3' b24 =--a24n 

Rl(u)=a32 u2, R2(u)=b32 u2 +b33 u3 

a32 =a22, b32 = b22, b33 = b13 

(2.8) 

Rl(U) = 0, R2(u) = b43 u3' b43 = b13 (2.9) 

Rl(u)=aslu, R2(u)=O, asl =all (2 .10 )  

in the case of Eqs (1.7) and (1.10), and theories of the Reissner-Timoshenko and Kirchhoff-Love type 
and of the Fuss-Winkler foundation, respectively. 

For the second problem we obtain 
5 4 

Rl(u)= Z Cli ui, R2(tg)-w y. dli ui 
i=l i=l 

28 
cll = 2(n~-~t2 +$t), cl2 ='-~n, 

781 1 
CI 4 m n, C15 = - - ~ '  

2100 4200 

1 + 1 ( 7 _ 6 p .  ) C13 =~Cl l  

(94n 2 + 256g 2 - 186~t - 157) 

(2.11) 

dl I = 2n, dl2 = \ ' ~ - g ,  d13--~n, d 1 4 = ~ c t j +  ( 6 4 - 3 5 g )  

4 4 
i R2(u ) ,y. d2iu ~ R1(u)= 5". c=iu, = 

i=l i=l 

c21 =n[2n-~2( l -21a) l ,  c22 = (10e , - I ) ,  c23 -=.-a22c21 
n 

! 9 n c24 = S=,(n), d2, = d,i, d22 = nE= -~e ,  +--~, d23 =]-~(1 l - 5 e , ) ,  

4 4 
RI(U)-- E c3i tli, R2(u)= Y. d3i ui 

i=l i=1 

c.~, :c21, c32 = (10~ I +l),  c33 --cz~, c~ = - 1 - ~ ( 1 - 2 e l )  

d3! =d2j, d 3 2 = l  (15nE2-1Oct +8), d33=d23, d34--$32(n) 

a~4 =822(n) 

(2.12) 

(2.13) 

4 4 
i R2(u ) =  £ d4iui Rl(U)~-~ Z c4iu , 

i=1 i -- I  

c4, = c2,, c42 = 4(2Ei - 1), c43 = 0, c44 = I0nc34 

n2 
d4' =d2" d42 = (4ne2-2~I+I)' d43 = 6 '  daa =-~- 

(2.14) 

&(u)=aslu, R2(u)=d51u, Csl =c21, d~1 =d21 (2.15) 
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Rj(u) = c61u, R2(u) = O, c61 = cll (2.16) 

when the properties of the coating are specified by Eqs (1.5)-(1.7), (1.8)-(1.10) and (1.111,2) and the 
Reissner-Timoshenko type theory (1.111.2) and the Kirchhoff-Love type theory, and (1.11) and (1.12) 
and (1.14). Here Ski(n) are polynomials of degree j, the form of which is omitted for brevity. 

To close the formulation of the problems in question on the indentation of a punch into a two-layer 
foundation for a fixed region f~ we must add the following statics conditions to integral equation (2.1), 
(2.2) 

P = 02f ~ q(x,y)dxdy, {Mx, My} = 02~ J {y,x}q(x,y)d.xdy (2.17) 
f l  f l  

which serves to establish the relation between the force factors P, Mx and My and the geometrical factors 
8, Otx, ay. 

We will now dwell in more detail on an asymptotic analysis of the problems, assuming that 

n -- O(ZY) (L ~ 0) (2.18) 

where, when ~: > 0, the stiffness of the elastic substrate is greater than the stiffness of the coating, and, 
conversely, when ~c < 0, the stiffness of the half-space is less than the stiffness of the reinforcing layer. 
To do this we obtain the difference between the functions (2.3) and (2.4) and the corresponding 
expressions (2.5)-(2.16), we introduce their relation (2.18) and we establish the order of the result 
obtained as ~ ~ 0. 

We will initially investigate the first problem and assume that K/> 0. Dropping terms 0(~  5) and higher 
we see that formulae (2.3) and (2.5) and (2.6) are identical. When 0 ~< ~: < 1, apart from terms of the 
order of ~3+2K, and when ~:/> 1, apart from terms O(~.s), we establish the closeness of relations (2.3) 
and (2.5), (2.10). Note that when K/> 3 in practical calculations the first term in (2.5) and (2.10) are 
usually neglected with an accuracy of the order of O(~ 3) [7] and we consider the coating as a thin Winkler 
layer, lying on a rigid foundation. 

Suppose now that -3 I> K < 0. Then, omitting terms O(;~ 5+~) and higher, we obtain equality of the 
relations (2.3) and (2.5), (2.6). At the same time, for -2 i> K < 0, neglecting terms O(LI-~), while for 
-3 /> K < -2, neglecting quantities of the order (~5+K), we have agreement between the function (2.3) 
and one of the formulae (2.5) and (2.7)-(2.9). When ~: < -3, apart from terms O(UI-~), we obtain 
equality between the function (2.3) and one of the functions of the form (2.5), (2.6)-(2.9). 

We now consider the second problem and we will assume that the parameter ~ i> 0. Dropping terms 
of the order of L3 and higher we conclude that formulae (2.4) and (2.5), (2.11) agree with one another. 
Together with this, when 0 < ~: < 2, apart from terms of the order of O(~. 1+~) and when K/> 2, apart 
from terms of the order of ~3, we obtain equality between relations (2.4) and (2.5), (2.16). When 

I> 3, as above, apart from terms up to O(~ 3) in engineering calculations [11, 12] we assume the substrate 
to be rigid while the coating is simulated by a set of Winkler springs. 

We will now assume that K < 0. For this version we have agreement between formulae (2.4) and 
(2.5), (2.11) up to terms of the order of L3, and agreement between equality (2.4) and one of relations 
(2.5), (2.12)-(2.15), apart from terms of the order of O(~.). 

Hence, we can draw the following conclusions from the above asymptotic analysis. 
1. equations (1.5)-(1.7) are applicable, with a fairly high degree of accuracy, over the whole range 

of variation of the main geometrical and physical parameters of the problems in question; 
2. the deformation properties of a "soft" coating agree well with the Fuss-Winkler hypothesis; 
3. in the case of a "rigid" coating and weak adhesion to the substrate, the accuracy of Eqs (1.10) and 

their modifications increases as the parameter n increases, agreeing with the accuracy of Eqs (1.7) when 
n ~ O(U2); an increase in the physical parameter n from n ~ O(L -z) to n -~ O(~ -3) leads to a small 
loss of accuracy in the equations of all the theories considered in Section 1; finally, a further increase 
in the relative stiffness of the coating n is accompanied by an increase in the accuracy of all the equations 
of the applied theories of the deformation of elastic plates; 

4. for a "rigid" coating, adhering to the base, the use of Eqs (1.8)-(1.10) and their modifications leads 
to an accuracy given by the Melan covering model (1.11), and hence for this version it is best to use 
either Eqs (1.5)-(1.7) or relations (1.11). 

3. We will study the structure of the solution of integral equation (2.1), (2.2), which depends very 
much on the behaviour of the symbol K(u) of its kernel k(s, t) on the real axis (below, in Eq. (2.22) we 
will assume [4] F 1 = F 2 = ( - o o ,  oo). For the problems considered in Section 2, K(u) is a positive, even 
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and continuous function (apart from the point u = 0) when l u [ < ~, and has the following asymptotic 
form 

K(u)=D m lul -~ I I+O(lul  -ct e -I~lul) (tul---->*~), K(u)-Iul -I (u--->0) (3.1) 

where Dm= const (m = 0, 1, 2, 4), while a = 0 and 13 = 2 or ct I> 1, 13 = 0. 
We will now introduce necessary definitions and notation [13-15]. Suppose C~(f2) is the set of k-times 

continuously differentiable functions in the region f2, C°([2), C~0 is a class of infinitely differentiable 
finite functions in two-dimensional Euclidean space, CT/2(f2) is the space of functions with norm 

• = max I f(x,y)p½ I ((x,y) ~ ~ )  IlSllc,  
where p is the distance to the closest boundary point of the region ~,  Lp([2) (p /> 1) is the space 
of functions integrable in f2 with degree p, and /~/,(f2), H~(f2) is the space of generalized 
Sobolev-Slobodetskii functions, where H0(f2) = L2(f2). 

Theorem 1 [13]. Supposeg(x,y)~C~([2) in the region f2 with boundary ~f2 = F: F(X, Y) = 0 ((X, Y) 
F), having continuously differentiable curvature. Then, integrable equation (2.1), (2.2), (3.1) (m = 

1) is uniquely solvable in the space C1"/2(f2) and the following correctness relation holds: II q ilq~ ~< Mlt g IIc 2 
(M = const). 

Since we have the equality p = IF(x, y) l [F2x(X, Y + F~(X, y)]-1/2, the correct solvability in the 
class C~z(f2) allows of the presence of a singularity in the ~unction q(x, y) of the form IF(x, y)1-1/~ as 
(x, y) ~ (X, Y). Hence, we obtain the following structure of the solution of the equation 

q(x, y) = co(x,y) l F(x, y) I -~  (3.2) 

where co(x, y)eC(f2)  is a function that is continuous in the closed region fi, i.e. q(x, y)eLe(f2). 
Theorem 2 [14]. Integral equation (2.1), (2.2), (3.1) (m = 0) is uniquely solvable in C(f2) for any 

function g(x, y) eC(f2). 
Theorem 3 [16]. Ifq(x,y)eHc,(O) (~ >t 13 = m/2, m = 2.4) in the region [2 with smooth boundary 

Off = F ((X, Y) e F), a solution of integral equation (2.1), (2.2), (3.1) (m = 2, 4) exists and is unique 
in the class/:/_p(f2), the function q(x, y) can be represented in the form 

q(x,y) = ~(x,y)+ Ut(x,y), ¥(x,y) ~ Het_m(f~ ) (3.3) 

Note that the unique solvability of integral equations (2.1), (2.2), (3.1) for m = 2 or m = 4, respectively, 
in the spaces H_1([2) and H_z(f2) denotes the following. Suppose j = (Jl, J2) is a multi-index, I J I = J l + 
J2. We will denote by {Q(X, Y)8(F)} (j) the distribution with carrier in F, which acts on the test function 
f E C~0by the formula 

({Q(x, y)8([') }u), f )  = (~I)UI ~ Q(X, Y)f(J)(X, Y)ds 
F 

where Q(X, Y) is a smooth function on F. Then, by (3.3), we can write 

p - i  1 "~ '~'(x,y)= E ( - )  {QAX, Y)8(F)) <i) (3.4) 
i/l=0 

Hence we conclude that an increase in the smoothness of the function g(x, y) under the condition of 
Theorem 3 does not disturb the structure of (3.3) and (3.4), but may increase the degree of smoothness 
of the correction ~/(x, y) in (3.3). For example, if g(x, y)~Hm(~), then V(x, y)~L2(D). 

Hence, it follows from Theorem 1 that the contact pressure q(x,y) has the form (3.2), i.e. it contains 
a singularity of the type IF(x, y)1-1/2, when the properties of the coatings are modelled: (1) by the 
equations of the theory of elasticity, (2) by Eqs (1.10)when there is weak adhesion between the coating 
and the foundation, and (3) by relations (1.8)-(1.10), or the equations of the Melan covering (1.11), 
or the first two formulae of (1.11) in combination with theorems of the Reissner-Timoshenko or 
Kirchhoff-Love type, if the coating is rigidly attached to the substrate. 

By Theorem 2 the function q(x, y) has finite values on the boundary of the contact region~ if the 
properties of the coatings are described by Eqs (1.5)-(1.7) or are modelled by a set of Winkler springs. 

By Theorem 3 the contact pressure q(x,y) is made up of a distributed load and point forces or forces 
and moments acting on the boundary of the contact region, when the properties of the coating are 
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described by the Reissner-Timoshenko and Kirchhoff-Love equations respectively and it is weakly 
attached to the foundation. 

To solve integral equations (2.1), (2.2), (3.1) one can use a modification of the variational-difference 
method, the scheme of which and its justification are given in [13]. Here it is only necessary to note 
that for the first problem, in the case of a coating modelled by a Kirchhoff-Love or a Reissner- 
Timoshenko type plate, it is necessary to formulate the conditions for determining Qo(X, Y) and 
QI(X, Y) [16]. 

This research was supported financially by the Russian Foundation for Basic Research and the 
International Association for Promoting Cooperation with Scientists from the Independent States of 
the Former Soviet Union (95-IN-RU-492). 

R E F E R E N C E S  

1. POPOV, G. Ya. and TOLKACHEV, V. M., The problem of contact between rigid bodies with thin-walled elements. Izv. Akad. 
Nauk SSSR. MTT, 1980, 4, 192-206. 

2. VASIL'YEV, V. V., A discussion on the classical theory of plates, lzv. Ross. AkatL Nauk. MTT, 1995, 4, 140-150. 
3. KOVALENKO, Ye. V., More-accurate equations of the deformation of elastic plates. Pr/k/. Mekh., 1989, 25, 10, 111-116. 
4. PETRASHEN', G. I., The theory of vibration of thin plates. Uch. Zap. Leningr Gos. Univ. Ser. MaL Nauk, 1951,149,172-249. 
5. VOROVICH, L I., ALEKSANDROV, V. M. and BABESHKO, V. A.,Non-classicalMixed Problems ofthe Theory of Elasticity. 

Nauka, Moscow, 1974. 
6. KOVALENKO, Ye. V., Contact problems for bodies with coatings (formulations and methods of solution). I ~  AkacL Nauk 

ArmSSR. Mekhanika, 1988, 41, 40-50. 
7. ALEKSANDROV, V. M. and MKHITARYAN, S. M., Contact Problems for Solids with Thin Coatings and Layers. Nauka, 

Moscow, 1983. 
8. GRIGOLYUK, E. I. and TOLKACHEV, V. M., Contact Problems of the Theory of Plates and Shells. Mashinostroyeniye, 

Moscow, 1983. 
9. VLASOV, V. Z. and LEONT'YEV, N. N., Beams, Plates and Shells on an Elastic Foundation. Fizmatgiz, Moscow, 1960. 

10. PETRISHIN, V. I., PRIVARNIKOV, A. IC and SHEVLYAKOV, Yu. A., The solution of problems for multilayer foundations 
lzv. Akad, Nauk SSSR. Mekhanika, 1965, 2, 138-143. 

11. ALEKSANDROV, V. M., BABESHKO, V. A., BELOKON', A. V., VOROVICH, I. I. and USTINOV, Yu. A., The contact 
problem for a ring layer of small thickness, lnzh. Zh. MTT, 1966, 1,135-139. 

12. KOVALENKO, Ye. V., Calculation of the wear at the coupling between an axle and a hub. lzv. Akad. Nauk SSSR. MTT, 
1982, 6, 66-72. 

13. BABESHKO, V. A., GLUSHKOV, Ye. V. and ZINCHENKO, Zh. E, The Dynamics of Non-uniform Linearly Elastic Media. 
Nauka, Moscow, 1989. 

14. KANTOROVICH, L V. and AKILOV, G. E, FunctionalAnalysis. Nauka, Moscow, 1977. 
15. ESKIN, G. I., Boundary.value Problems for Elliptic Pseudo-differentialEquations. Nauka, Moscow, 1973 
16. RAMM, A. J., Fields Estimation Theory. Longman/Wiley, New York, 1990. 

Translated by R.C.G. 


